

SIES College of Arts, Science & Commerce (Autonomous) Department of Statistics

Faculty: Science Program: B.Sc. Course: Statistics

Syllabus for T.Y.B.Sc.
(Credit Based Semester and Grading System with effect from the academic year 2018–2019)

SEMESTER V THEORY

Title of Course	Title of Course PROBABILITYAND DISTRIBUTION THEORY			
Course Code	Unit	Topics	Lectures/ Week	Credits
	I	PROBABILITY I	1	
	II	PROBABILITY II	1	
PAPER I SIUSSTA51	III	JOINT MOMENT GENERATING FUNCTION, TRINOMIAL AND MULTINOMIAL DISTRIBUTION	1	2.5
	IV	BIVARIATE NORMAL DISTRIBUTION	1	
Title of Course		THEORY OF ESTIMATION		
Course Code	Unit	Topics	Lectures/ Week	Credits
	I	POINT ESTIMATION AND PROPERTIES OF ESTIMATOR	1	
PAPERII	II	METHODS OF ESTIMATION	1	2.5
SIUSSTA52	III	BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL	1	2.5
	IV	LINEAR ESTIMATION	1	
Title of Course		BIOSTATISTICS		
Course Code	Unit	Topics	Lectures/ Week	Credits
	I	EPIDEMIC MODELS	1	
DADED III	II	BIOASSAYS	1	2.5
PAPER III SIUSSTA53	III	CLINICAL TRIALS	1	2.5
510551A33	IV	BIOEQUIVALENCE	1	
Title of Course	ELEMENTS OF ACTUARIAL SCIENCE			
Course Code	Unit	Topics	Lectures/ Week	Credits
	I	MORTALITY TABLES	1	
PAPER IV	II	COMPOUND INTEREST AND ANNUITIES CERTAIN	1	2.5
SIUSSTA54	III	LIFE ANNUITIES	1	
	IV	ASSURANCE BENEFITS	1	1

PRACTICALS

Course Code	Practicals based on	Lectures/ Week	Credits
SIUSSTAP51	SIUSSTA51	4	
	SIUSSTA52	4	3
SIUSSTAP52	SIUSSTA53	4	3
	SIUSSTA54	4	

SEMESTER VI THEORY

Title of Course	DISTRIBUTION THEORY AND STOCHASTIC PROCESSES			
Course Code	Unit	Topics	Lectures/ Week	Credits
	I	ORDER STATISTICS	1	
- ·	II	GENERATING FUNCTIONS	1	2.5
PAPER I SIUSSTA61	III	STOCHASTIC PROCESSES	1	2.5
S1USS1A01	IV	QUEUING THEORY	1	
Title of Course		TESTING OF HYPOTHESES		
Course Code	Unit	Topics	Lectures/ Week	Credits
DADED H	I	MOST POWERFUL TESTS	1	
PAPER II SIUSSTA62	II	UNIFORMLY MOST POWERFUL & LIKELIHOOD RATIO TESTS	1	2.5
	III	SEQUENTIAL PROBABILITY RATIO TESTS	1	2.5
	IV	NON-PARAMETRIC TESTS	1	
Title of Course	OPERATIONS RESEARCH TECHNIQUES			
Course Code	Unit	Topics	Lectures/ Week	Credits
	I	INVENTORY CONTROL	1	
	II	REPLACEMENT	1	
PAPER III SIUSSTA63	III	SIMULATION	1	2.5
5105517105	IV	CAPITAL BUDGETING, SECURITIES MARKET, FUTURES & OPTIONS	1	
Title of Course	PREDICTIVE MODELLING AND INDUSTRIAL STATISTICS			
Course Code	Unit	Topics	Lectures/ Week	Credits
	I	LINEAR REGRESSION I	1	
DADED W	II	LINEAR REGRESSION II	1	
PAPER IV	III	CLASSIFICATION	1	2.5
SIUSSTA64	IV	CONTROL CHARTS & ACCEPTANCE SAMPLING	1	

PRACTICALS

Course Code	Practicals based on	Lectures/ Week	Credits
SIUSSTAP61	SIUSSTA61	4	
	SIUSSTA62	4	3
SIUSSTAP62	SIUSSTA63	4	3
	SIUSSTA64	4	

TYBSc SYLLABUS UNDER AUTONOMY

SEMESTER V PAPER I

- To acquire in-depth knowledge of probability theory.
- To understand significance of correlation using bivariate normal distribution.

Course Code	Title	Credits
SIUSSTA51	PROBABILITY AND DISTRIBUTION THEORY	2.5 Credits (60 lectures)
Unit I : PROBABI	LITY I	15 Lectures
Basic definitions: R	andom Experiment, Outcome, Event, Sample Space,	
Complementary, Mu	utually Exclusive, Exhaustive and Equally Likely Events.	
Mathematical, Statis	stical, Axiomatic and Subjective probability.	
Ordered samples and	on Maxwell Boltzmann, Bose Einstein and Fermi Dirac Statistics.	
		15 Lectures
Unit II :PROBABI	LITY II	
Theorems on Probable At least one, Exactly Matching and Guess Conditional Probable Independence of two Polya's urn model		
Unit III. IOINT M	15 Lectures	
Unit III: JOINT MOMENT GENERATING FUNCTION, TRINOMIAL AND MULTINOMIAL DISTRIBUTION		13 Lectures
variables of discrete random variables. Concept and definition Trinomial distribution generating function, Marginal & Condition Correlation coefficient Extension to Multin p ₁ + p ₂ ,+p _{k-1} + p _k =	perties of Moment Generating Function (MGF) of two random e and continuous type. Necessary condition for independence of two on of Multivariate MGF. On: Definition of joint probability distribution of (X, Y) . Joint moment moments μ_{rs} where $r=0, 1, 2$ and $s=0, 1, 2$. Onal distributions. Means & Variances. On the Sum $X+Y$. On the Sum $X+Y$ of the Sum $X+Y+Y$ of the Sum $X+Y+Y$ of the Sum $X+Y+Y+Y+Y+Y+Y+Y+Y+Y+Y+Y+Y+Y+Y+Y+Y+Y+Y+Y$	

Unit IV: Unit I: BIVARIATE NORMAL DISTRIBUTION Definition of joint probability distribution (X, Y). Joint Moment Generating function, moments μ_{rs} where r=0, 1, 2 and s=0, 1, 2. Marginal & Conditional distributions. Means & Variances. Correlation coefficient between the random variables. Necessary and sufficient condition for the independence of X and Y. Distribution of aX+bY, where 'a' and 'b' are constants. Distribution of sample correlation coefficient when $\rho = 0$. Testing the significance of a correlation coefficient. Fisher's z – transformation. Tests for H₀: $\rho = \rho_0$ & H₀: $\rho_1 = \rho_2$ Confidence interval for ρ .

SEMESTER V: PRACTICALS BASED ON COURSE SIUSSTA51

1.	Probability-1
2.	Probability -2
3.	Probability -3
4.	Joint Moment Generating function
5.	Trinomial & Multinomial Distribution
6.	Bivariate Normal Distribution
7.	Tests for correlation and Interval estimation

- 1. Biswas S.(1991). *Topics in Statistical Methodology*, First edition: Wiley Eastern Ltd.
- 2. Chandra T.K.& Chatterjee D.(2005). *A First Course in Probability,* Third Edition: Narosa Publishing House.
- 3. Feller W. (1968). *An introduction to probability theory and it's applications*, Volume 1, Third edition: Wiley Eastern Limited.
- 4. Gupta S C & Kapoor V K. (2014). *Fundamentals of Mathematical Statistics*, Eleventh edition, Sultan Chand & Sons.
- 5. Hogg R V. & Craig A. T. (2012). *Introduction to Mathematical Statistics*, Seventh edition: Pearson Education (Singapore) Pvt. Ltd.
- 6. Hogg R. V. & Tanis E.A..(2014). *Probability and Statistical Inference*, Ninth edition: McMillan Publishing Company
- 7. Kapur J. N.& Saxena H. C.(2010). *Mathematical Statistics*, Fifteenth edition: S. Chand and Company.
- 8. Mood A. M., Graybill F. A.& Boyes D. C. (1974). *Introduction to the theory of Statistics*, Third edition, McGraw-Hill Series.

PAPER II

- To learn methods of estimation and properties of estimators.
- To use Bayesian approach in estimation.

Course Code	Title	Credits	
SIUSSTA52	THEORY OF ESTIMATION	2.5 Credits	
5105511102	<u> </u>	(60 lectures)	
Unit I :POINT ES	STIMATION AND PROPERTIES OF ESTIMATOR	15 Lectures	
_	eter and parameter space. Problem of Estimation,		
	istic, Estimator and Estimate.		
Properties of a goo			
	finition of an unbiased estimator, biased estimator, positive and		
	ults on unbiased estimators.		
	nition, Condition for consistency		
<u> </u>	ition, Neyman Factorization Theorem and Sufficient statistic for		
-	of probability distributions.		
Relative efficiency			
	e unbiased estimator (MVUE), Uniqueness property of MVUE.		
	function, Cramer-Rao inequality, Cramer-Rao Lower Bound		
(CRLB), Definitio	n of Efficient estimator using CRLB.		
Unit II :METHO	DS OF ESTIMATION	15 Lectures	
Method of Maxim	um Likelihood Estimation (M.L.E.), Definition of likelihood as a		
function of unknown	function of unknown parameter, Properties of M.L.E.		
Method of Momen	its,		
Method of Minimu	um Chi-square and Modified Minimum Chi-square.		
Unit III: BAYES	IAN ESTIMATION AND CONFIDENCE INTERVAL	15 Lectures	
Bayesian Estimation	on: Prior distribution, Posterior distribution, Loss function, Risk		
function, Bayes' so	olution under Squared Error Loss Function (SELF) and Absolute		
Error Loss function			
	n: Confidence Interval. Definition of pivotal quantity and its use		
in obtaining confid	dence limits. Confidence Intervals based on asymptotic property		
1	listant confidence interval for the parameters of standard		
distributions.			
Unit IV : LINEA		15 Lectures	
Linear Regression	Model $Y = \alpha + \beta X + e$ where e follows Independent N(0, σ^2).		
Maximum Likelih	ood and Least square Estimators of α , β , and σ^2 . Properties of the		
estimators. Confidence Intervals for α , β , and σ^2 . Testing Significance of the			
regression coefficient β. Gauss-Markoff Theorem for Full rank Model. Properties			
of the Estimator, Estimation of Linear function of parameters $l'\beta$. Mean and			
variance. Confider	nce Interval and Testing of significance of $l'\beta$.		

1.	Minimum Variance Unbiased Estimator
2,	Method of Estimation -1
3.	Method of Estimation -2
4.	Bayes' Estimation
5.	Confidence Interval
6.	Linear Estimation
7.	Use of R software

- 1. Arora S. & Bansi Lal (1989) *New Mathematical Statistics*: Satya Prakashan, New Delhi
- 2. Gupta S C & Kapoor V K. (2014). *Fundamentals of Mathematical Statistics*, Eleventh edition, Sultan Chand & Sons
- 3. Hoel P.G.(1966). *Introduction to Mathematical Statistics*, Fourth Edition: John Wiley & Sons Inc.
- 4. Hogg R V. & Craig A. T. (2012). *Introduction to Mathematical Statistics*, Seventh edition: Pearson Education (Singapore) Pvt. Ltd.
- 5. Hogg R. V.& Tannis E. A. (2014). *Probability and Statistical Inference*, Ninth Edition: Collier McMillan Publishers.
- 6. Kapur J. N.& Saxena H.C. (2010) *Mathematical Statistics*, Fifteenth Edition: S. Chand & Company Ltd.
- 7. Kshirsagar A.M.(1983) A course in Linear Models
- 8. Pawagi V.R.& Ranade S.A Statistical Methods Using R Software: Nirali Publication
- 9. Rohatgi V.K.& Ehsanes Saleh A.K. Md.(2008). *An introduction to Probability Theory and Mathematical Statistics*, Second Edition: Wiley series in Probability and Statistics. Miller I., Miller M.& Freund J.E. (1999) *John E. Freund's Mathematical Statistics*, Sixth Edition: Pearson Education Inc.

PAPER III

- To appreciate role of Statistics in Biology.
- To understand need, ethics and norms of clinical trials.

Course Code	Title	Credits	
CILICOTA 52	DIOCTATICTICS	2.5 Credits	
SIUSSTA53	<u>BIOSTATISTICS</u>	(60 lectures)	
Unit I : EPIDEMI	C MODELS	15 Lectures	
-	emic spread. Definitions of various terms involved.		
	l models for epidemics: Deterministic model with and without		
	removals, Host Vector model, Carrier model.		
	els. Reed - Frost and Greenwood models. Distribution of		
	d total number of cases. Maximum likelihood estimator of 'p'		
	ariance for households of sizes up to 4.		
Unit II: BIOASSAY		15 Lectures	
	of bioassays. Relative potency. Direct assays. Fieller's theorem.		
-	ssays. Tolerance distribution. Median effective dose ED50 and		
LD50. Probit analys	is.		
1	e-response relationship .Condition of similarity and Monotony.		
_	mations. Parallel line assays. Symmetrical (2, 2) and (3, 3)		
=	Validity tests using orthogonal contrasts. Point Estimate and		
Interval Estimate of			
Unit III: CLINICA	15 Lectures		
Introduction to clinic			
Common terminolog	y used in clinical trials. Over view of phases (I-IV)		
Study Protocol, Case	e record/Report form, Blinding (Single/Double)		
Randomized control	led (Placebo/Active controlled), Study Designs (Parallel, Cross		
Over).			
Types of Trials: Infe			
Inclusion/Exclusion	Inclusion/Exclusion Criteria. Statistical tools: Analysis of Parallel Design using		
Analysis of Variance			
Concept of odds rati	o. Sample size estimation.		
Unit IV: BIOEQUI	VALENCE	15 Lectures	
	ric Drug product. Bioavailability, Bioequivalence,		
·	K) parameters C_{max} , AUC_t , $AUC_{0-\infty}$, T_{max} , K_{el} , T_{half} .		
Estimation of PK pa			
1	alence: Parallel, Cross over (Concept only).		
Advantages of Cross			
Analysis of Parallel			
ANOVA and 90% confidence interval).			
Confidence Interval	approach to establish bioequivalence (80/125 rule).		

1.	Epidemic models
2.	Direct Assays
3.	Quantal Response Assays
4.	Parallel line Assay
5.	Clinical Trials
6.	Bioequivalence

- 1. Bailey N.T.J. (1975). *The Mathematical theory of infectious diseases*, Second edition: Charles Griffin and Co. London.
- 2. Bolton S. & Bon C. (2009). *Pharmaceutical Statistics*, Fifth edition: Marcel Dekker Inc.
- 3. Das M.N & Giri N.C.(1986). *Design and Analysis of Experiments*, Second edition: Wiley Eastern
- 4. Finney D.J. (1964). *Statistical Methods in Biological Assays*, First edition: Charles Griffin and Co. London
- 5. Fleiss J.L. (1999). *The Design and Analysis of Clinical Experiments*. Second edition: Wiley and Sons
- 6. Friedman L. M., Furburg C. D., Demets D. L.(2015). *Fundamentals of Clinical Trials*. Fifth edition: Springer Verlag.
- 7. Shein-Chung-Chow:(2008) *Design and Analysis of Bioavailability & Bioequivalence studies*, Third Edition: Chapman & Hall/CRC Biostatistics series.
- 8. Wayne D. W. (2013). *Biostatistics- A Foundation for Analysis in the Health Sciences*, Tenth Edition: Wiley Series in Probability and Statistics.
- 9. Zar Jerrold H. (2013). Biostatistical Analysis, Fifth edition: Pearson's education.

PAPER IV

- To comprehend Vital statistics
- To study formulation of policies in insurance industry

Course Code	Title	Credits
SIUSSTA54	ELEMENTS OF ACTUARIAL SCIENCE	2.5 Credits (60 lectures)
Unit I: MORTA	ALITY TABLES	15 Lectures
Vital statistics: M mortality function Estimation of μ_x mortality: Gomp mortality tables. Average life at d		
Unit II: COMP	OUND INTEREST AND ANNUITIES CERTAIN	15 Lectures
Accumulated value and present value, nominal and effective rates of interest. Varying rates of interest. Equation of value. Equated time of payment. Present and accumulated values of annuity certain (immediate and due) with and without deferment period. Present value for perpetuity (immediate and due) with and without deferment period. Present and accumulated values of increasing annuity, increasing annuity when successive installments form arithmetic progression, annuity with frequency different from that with which interest is convertible. Redemption of loan.		
Unit III: LIFE		15 Lectures
life annuities (im values of variabl annuities (immed	,	
Unit IV: ASSURANCE BENEFITS Present value of Assurance benefits in terms of commutation functions of:		15 Lectures
Present value of Pure endowmen Whole life assura assurance Net premiums: N for various assur Office premiums		

1.	Mortality tables 1
	Mortality tables 2
3.	Annuities 1
4.	Annuities 2
5.	Life annuities
6.	Assurance benefits

- 1. Dixit S.P., Modi C.S.& Joshi R.V.(1991). *Mathematical Basis of Life Assurance*, First edition (Reprint): Insurance Institute of India.
- 2. Gupta S. C. &. Kapoor V. K. (2014). *Fundamentals of Applied Statistics*, Fourth edition: Sultan Chand & Sons.
- 3. Neill A. (1977). *Life Contingencies*, First edition: Heineman educational books, London

TYBSc SYLLABUS UNDER AUTONOMY

SEMESTER VI PAPER I

- To study order statistics and generating functions useful in research
- To learn stochastic processes to understand its application in queuing theory

Course Code	Title	Credits
CILICOTE A CA	DISTRIBUTION THEORY AND STOCHASTIC	2.5 Credits
SIUSSTA61	<u>PROCESSES</u>	(60 lectures)
Unit I : ORD	ER STATISTICS	15 Lectures
Definition of C	Order Statistics based on a random sample.	
Derivation of:	Cumulative distribution function of r th order statistic, Probability	
_	ons of the r th order statistic, Joint Probability density function of the	
r th and the s th o	rder statistic (r <s),joint all="" density="" function="" n<="" of="" probability="" td=""><td></td></s),joint>	
ordered statisti	cs, Probability density function of Median (in the case of odd	
sample sizes) a	and Range.	
Unit II : GEN	ERATING FUNCTIONS	15 Lectures
Definitions of generating function and probability generating function. Expression for mean and variance in terms of generating functions. Definition of a		
convolution of	two or more sequences. Generating function of a convolution.	
Generating fur	actions of the standard discrete distributions. Relation between:	
Bernoulli and	Binomial distributions, Geometric and Negative Binomial	
distributions in	terms of convolutions.	
Unit III: STOCHASTIC PROCESSES		15 Lectures
Definition of stochastic process. Postulates and difference differential equations for: Pure birth process, Poisson process with initially 'a' members, for a =0 and a >0, Yule-Furry process, Pure death process, Death process with $\mu_n=\mu$, Death process with $\mu_n=n\mu$, Birth and death process, Linear growth model. Derivation of P_n (t), mean and variance where ever applicable.		
Unit IV: QUEUING THEORY		15 Lectures
Basic elements of the Queuing model.		
Roles of the Poisson and Exponential distributions.		
Derivation of Steady state probabilities for birth and death process. Steady state		
probabilities and various average characteristics for the following models:		
$(M/M/1): (GD/\infty/\infty), (M/M/1): (GD/N/\infty), (M/M/c): (GD/\infty/\infty),$		
(M/M/c): (GI	$O/N/\infty$, $(M/M/\infty)$: $(GD/\infty/\infty)$, $(M/M/R)$: $(GD/k/k)$	

1.	Order Statistics – 1
2.	Order statistics – 2
3.	Generating Function
4.	Stochastic Processes
5.	Queuing Theory -1
6.	Queuing Theory -2

- 1. Biswas S.(1991). *Topics in Statistical Methodology*, First edition: Wiley Eastern Ltd.
- 2. Feller W. (1968). *An introduction to probability theory and it's applications*, Volume 1, Third edition: Wiley Eastern Limited.
- 3. Gupta S. C.& Kapoor V. K. (2014). *Fundamentals of Mathematical Statistics*, Eleventh Edition, Sultan Chand & Sons.
- 4. Hogg R V. & Craig A. T. (2012). *Introduction to Mathematical Statistics*, Seventh edition: Pearson Education (Singapore) Pvt. Ltd.
- 5. Hogg R. V. & Tanis E.A..(2014). *Probability and Statistical Inference*, Ninth edition: McMillan Publishing Company
- 6. Kapur J. N.& Saxena H. C.(2010). *Mathematical Statistics*, Fifteenth edition: S. Chand and company.
- 7. Medhi J: (2013). Stochastic Processes, Second edition: Wiley Eastern Ltd.
- 8. Mood A. M., Graybill F. A.& Boyes D. C. (1974). *Introduction to the theory of Statistics*, Third edition, McGraw-Hill Series.
- 9. Taha H.A.(2010). *Operations Research: An introduction*, Ninth edition: Prentice Hall of India Pvt. Ltd.

PAPER II

- To study testing statistical hypotheses for fixed and variable sample sizes
- To understand applications non parametric tests used in social sciences

Course Code	Title	Credits
SIUSSTA62	TESTING OF HYPOTHESES	2.5 Credits
		(60 lectures)
Unit I : MOST	POWERFUL TESTS	15 Lectures
Problem of testing of hypothesis. Definitions of Simple hypothesis, Composite hypothesis, Null Hypothesis, Alternative Hypothesis, Test of hypothesis, Critical region, Type I and Type II errors, Level of significance, p-value, size of the test, Power of the test, Power function of a test, Power curve. Definition of most powerful test of size α for a simple hypothesis against a simple alternative hypothesis. Neyman-Pearson fundamental lemma.		
Unit II: UNIFORMLY MOST POWERFUL & LIKELIHOOD RATIO TESTS Definition, Existence and Construction of uniformly most powerful (UMP) test. Likelihood ratio principle. Definition of test statistic and its asymptotic distribution (statement only).		15 Lectures
Unit III: SEQU	JENTIAL PROBABILITY RATIO TESTS	15 Lectures
Sequential test procedure for testing a simple null hypothesis against a simple alternative hypothesis. Its comparison with fixed sample size test procedure. Definition of Wald's SPRT of strength (α, β) .		
Unit IV: NON-PARAMETRIC TESTS		15 Lectures
Need for non parametric tests. Distinction between a parametric and a non parametric test. Concept of a distribution free statistic. Single sample and two sample Nonparametric tests: Sign test, Wilcoxon's signed rank test, Run test, Mann–Whitney test, Median test, Kruskal Wallis test, Friedman test, Fisher's exact test. Assumptions, justification of the test procedure for small & large samples.		

1.	Testing of Hypothesis 1
2.	Testing of Hypothesis 2
3.	SPRT
4.	Non Parametric test 1
5.	Non Parametric test 2
6.	Use of R.

- 1. Arora S. & Lal B. (1989) *New Mathematical Statistics*: Satya Prakashan, New Delhi
- 2. Biswas S.(1991). *Topics in Statistical Methodology* First edition: Wiley Eastern Ltd.
- 3. Daniel W.W..(2000) *Applied Non Parametric Statistics* Second edition Boston-Houghton Mifflin Company
- 4. Gupta S C & Kapoor V K. (2014). *Fundamentals of Mathematical Statistics*, Eleventh edition, Sultan Chand & Sons.
- 5. Hogg R V. & Craig A. T. (2012). *Introduction to Mathematical Statistics*, Seventh edition: Pearson Education (Singapore) Pvt. Ltd.
- 6. Hogg R. V. & Tanis E.A. .(2014). *Probability and Statistical Inference*, Ninth edition: McMillan Publishing Company
- 7. Lehmann, E. L.(2008). *Testing of Statistical Hypothesis*, Third edition: Wiley &sons
- 8. Pawagi V.R.& Ranade S.A. *Statistical Methods Using R Software:* Nirali Publication
- 9. Rao, C. R. (2001). *Linear Statistical Inference*, Second edition: Wiley Series in Probability & Statistics
- 10. Siegal S., Castellan N. J. (1988). *Non Parametric Statistics for Behavioral Science*, Second edition: Mc Graw Hill Publishing Co.
- 11. Wald A. (1947). *Sequential Analysis* . First edition: John Wiley & Sons , New York

PAPER III

- To comprehend knowledge of industry problems such as inventory, replacement
- To understand use of statistics in investment analysis

Course Code	Title	Credits
SIUSSTA63	OPERATIONS RESEARCH TECHNIQUES	2.5 Credits (60 lectures)
Unit I : INVENTOR	RY CONTROL	15 Lectures
instantaneous repleni uniform rate of repleni instantaneous repleni model. Probabilistic models: without setup cost. U	s: Single item static EOQ models for Constant rate of demand with shment, with and without shortages. Constant rate of demand with hishment, with and without shortages. Constant rate of demand with shment without shortages, with at most two price breaks. Price break Single period with Instantaneous demand (discrete and continuous) niform demand (discrete and continuous) without set up cost.	15 X
Unit II: REPLACE		15 Lectures
Replacement of items changes with time. R Group replacement p		
Unit III :SIMULAT	ION	15 Lectures
Scope of simulation a Simulation. Elements from probability distr standard distributions		
Capital budgeting: Pa Method. Methods of approach, Risk adjust Securities Market: St equity share, preferer share, Price earning r Options terminology: price, Expiry date, Ca of an option. Futures & Options: In Futures contracts. Fac	BUDGETING, SECURITIES MARKET, FUTURES & OPTIONS ayback Method, Net present value method, Internal Rate of Return incorporating risk into capital budgeting: Certainty equivalent ted discount rates, Statistical distribution approach ock market, share, face value, market value, dividend, atial share, bonus and right shares. Initial Public offer, Earning per atio index, Nifty, Beta value. Index option, Stock option, American option, European option. Strike all option, Put option, Buyer of an option, Writer Introduction to F & O market. Difference between Forward and extors influencing the market. Hedging, Arbitrage, Open interest.	15 Lectures

1.	Inventory 1
2.	Inventory 2
3.	Replacement
4.	Simulation
5.	Capital Budgeting
6.	Securities Market
7.	Futures & Options

REFERENCES:

- 1. Bannerjee B.: *Operation Research Techniques for Management*, First edition, Business Books
- 2. Bronson R. (1997). *Schaum Series book in Operations Research*, Second edition: Tata McGraw Hill Publishing Company Ltd.
- 3. Ganapathy Vidyamurthi(2004). Pairs Trading Quantitative Methods and Analysis, John
- 4. Hull John C. (2010). *Futures, Options, and other derivatives*, Seventh edition: Prentice Hall
- 5. Hull John C. (2017). Fundamentals of Futures and Options Markets, Global Edition, Eighth Edition: Pearson Education Limited
- 6. Kantiswaroop & Gupta M. (2010). *Operations Research*, Twelfth Edition: Sultan Chand & Sons
- 7. Prasanna Chandra. (2014). *Fundamentals of Financial Management*, Sixth Edition, McGraw Hill Education (India) Private Limited.
- 8. Sharma J. K. (2013). *Operations Research theory and applications*, Fifth edition: Macmillan India Ltd.
- 9. Sharma J.K. (2010). *Quantitative Techniques for Managerial Decisions*: MacMillan India Ltd.
- 10. Sharma S.D. Operations Research, Eleventh Edition: Kedar Nath Ram Nath & Co.
- 11. Tim Lieu. Xin Li. Optimal Mean Reversion Trading Mathematical Analysis and Practical Applications, World Scientific.
- 12. Vora N. D. (2015). *Quantitative Techniques in Management*, Fourth edition: McGraw Hill Co.

Wiley & Sons, Inc.

PAPER IV

- To comprehend modelling techniques used in forecasting
- To study the techniques used to check and control quality of the product

Course Code	Title	Credits
CITICOTA CA	PREDICTIVE MODELLING AND INDUSTRIAL	2.5 Credits
SIUSSTA64	<u>STATISTICS</u>	(60 lectures)
model, Derivation (for one and two e (without proof). C Procedure of testin coefficients, Signi explanatory variable Unit II: LINEAR Autocorrelation: C Least Square (GL: Heteroscedasticity Godfrey test. Weight Multicollinearity: Pairwise Correlating Consequences of and multicollinear	model with one or more explanatory variables. Assumptions of the of Ordinary Least Square (OLS) estimators of regression coefficients, xplanatory variables models). Properties of least square estimators oefficient of determination R² and adjusted R². Ing: Overall significance of the model, Significance of individual ficance of incremental contribution of explanatory variable for two oles model. Confidence intervals for the regression coefficients. REGRESSION II Concept, Detection using Run Test, Durbin Watson Test, Generalized S) method. The Detection using Spearman's Rank correlation test, Breusch-Paganghted Least Square (WLS) estimators Detection using R square & t ratios, Variance Inflation Factor (VIF), on between regressors, using OLS estimators in presence of autocorrelation, heteroscedasticity	15 Lectures 15 Lectures
Model, Estimation Hosmer-Lemeshar Concept of Multin	IFICATION on Models: Introduction to Binary Logistic Regression, Statistical of Parameters using MLE, Odds Ratio, w Test for goodness of fit, Classification Table. comial and ordinal logistic regression. or (kNN) Algorithm, Weighted kNN, Naïve Bayes.	15 Lectures
Principles of control Chart. Exponentia (CUSUM) control c-chart with varial Tolerance Limits, Acceptance sample		15 Lectures

Linear regression model 1
 Linear regression model 2
 Logistic Regression
 kNN and Naïve Bayes
 Control Charts
 Acceptance Sampling
 Use of R

- 1. Burr J. T.(2004). *Elementary Statistical Quality Control*, Second Edition ,CRC Press: Taylor & Francis Group.
- 2. Duncan A.J. (1965). Quality Control & Industrial Statistics, Third Edition
- 3. E.L. Grant. (1988). Statistical Quality Control, Second edition: McGraw Hill.
- 4. Greene W. (2017). *Econometric Analysis*, Eighth edition: McMillan Publishing Company.
- 5. Gujrathi D.N., Porter D.& Gunasekar S. (2017). *Basic Econometrics*, Fifth edition: McGraw-Hill Co.
- 6. Hansen B. L., (1973), *Quality Control: Theory and Applications:* Prentice Hall of India Pvt. Ltd
- 7. Hastie, R. Tibshirani & J. Friedman. (2009) *The Elements of Statistical Learning, Data Mining, Inference and Prediction,*: Springer Series in Statistics.
- 8. Hosmer D. W., Lemeshow Jr.& Sturdivant S, R. X.(2013). *Applied Logistic Regression*: John Wiley & Sons,
- 9. Mann N.R., Schafer R.E.& Singapurwalla N.D.(1974). *Methods for Statistical Analysis of Reliability and Life Data*, First edition: John Wiley & Sons.
- 10. Montgomery D., (2009) *Statistical Quality Control*, Sixth Edition: Arizona State University. John Wiley & Sons, Inc.

EXAMINATION PATTERN

Internal Assessment of Theory per Course per Semester

Class Test
 Project / Assignment / Presentation etc.
 Marks.
 Marks.

Semester End Theory Examination per Course

At the end of the semester, examination of two hours duration and 60 marks based on the four units shall be held for each course.

Pattern of Theory question paper:

There shall be four compulsory questions of 15 marks each (with Internal Option).

Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III Question 4 based on Unit IV.

Semester End Practical Examination per Course

Journal
 Viva Voce
 Practical Examination
 Marks.
 Marks.

At the end of the semester, examination of 1hour 30 minutes duration and 40 marks shall be held for each course.

Pattern of Practical question paper:

There shall be four compulsory questions of 10 marks each (with Internal Option). Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III, Question 4 based on Unit IV.